Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.660
Filtrar
1.
Biochem Pharmacol ; 223: 116197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583810

RESUMO

Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.


Assuntos
Melanoma , MicroRNAs , Quassinas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quassinas/farmacologia , Apoptose , MicroRNAs/genética , MicroRNAs/farmacologia , Proteínas Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566477

RESUMO

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/metabolismo , Linhagem Celular Tumoral , RNA Circular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ciclina E/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
4.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577934

RESUMO

Hepatitis B X­interacting protein (HBXIP) is a membrane protein located on the lysosomal surface and encoded by the Lamtor gene. It is expressed by a wide range of tumor types, including breast cancer, esophageal squamous cell carcinoma and hepatocellular carcinoma, and its expression is associated with certain clinicopathological characteristics. In the past decade, research on the oncogenic mechanisms of HBXIP has increased and the function of HBXIP in normal cells has been gradually elucidated. In the present review, the following was discussed: The normal physiological role of the HBXIP carcinogenic mechanism; the clinical significance of high levels of HBXIP expression in different tumors; HBXIP regulation of transcription, post­transcription and post­translation processes in tumors; the role of HBXIP in improving the antioxidant capacity of tumor cells; the inhibition of ferroptosis of tumor cells and regulating the metabolic reprogramming of tumor cells; and the role of HBXIP in promoting the malignant progression of tumors. In conclusion, the present review summarized the existing knowledge of HBXIP, established its carcinogenic mechanism and discussed future related research on HBXIP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Oncogênicas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Hepáticas/genética , Proteínas Oncogênicas/metabolismo
5.
J Med Virol ; 96(3): e29534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501356

RESUMO

Human endogenous retrovirus sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially the HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a 9-kDa HERV-K encoded protein, has been reported as an oncoprotein and found present in a variety of tumors and transformed cells. In the current study, we for the first time reported that ectopic expression of Np9 protein was able to induce DNA damage response from host cells especially through upregulation of γH2AX. Furthermore, we found that direct knockdown of Np9 by RNAi in Kaposi's Sarcoma-associated herpesvirus (KSHV) infected cells effectively reduced LANA expression, the viral major latent oncoprotein in vitro and in vivo, which may represent a novel strategy against virus-associated malignancies.


Assuntos
Retrovirus Endógenos , Herpesvirus Humano 8 , Neoplasias , Humanos , Retrovirus Endógenos/genética , Herpesvirus Humano 8/fisiologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Reparo do DNA
6.
Aging (Albany NY) ; 16(5): 4631-4653, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38446584

RESUMO

Psoriasis is a chronic inflammatory proliferative dermatological ailment that currently lacks a definitive cure. Employing data mining techniques, this study identified a collection of substantially downregulated miRNAs (top 10). Notably, 32 targets were implicated in both the activation of the IL-17 signaling pathway and cell cycle dysregulation. In silico analysis revealed that one of these miRNAs, miR-26a-5p, is a highly conserved cross-species miRNA. Strikingly, the miR-26a-5p sequences in humans and mice are identical, and mmu-miR-26a-5p was found to target the same 7 cell cycle targets as its human counterpart, hsa-miR-26a-5p. Among these targets, CDC6 and CCNE1 were the most effective targets of miR-26a-5p, which was further validated in vitro using a dual luciferase reporter system and qPCR assay. The therapeutic assessment of miR-26a-5p revealed its remarkable efficacy in inhibiting the proliferation and G1/S transition of keratinocytes (HaCaT and HEKs) in vitro. In vivo experiments corroborated these findings, demonstrating that miR-26a-5p effectively suppressed imiquimod (IMQ)-induced psoriasis-like skin lesions in mice over an 8-day treatment period. Histological analysis via H&E staining revealed that miR-26a-5p treatment resulted in reduced keratinocyte thickness and immune cell infiltration into the spleens of IMQ-treated mice. Mechanistic investigations revealed that miR-26a-5p induced a cascade of downregulated genes associated with the IL-23/IL-17A axis, which is known to be critical in psoriasis pathogenesis, while concomitantly suppressing CDC6 and CCNE1 expression. These findings were corroborated by qPCR and Western blot analyses. Collectively, our study provides compelling evidence supporting the therapeutic potential of miR-26a-5p as a safe and reliable endogenous small nucleic acid for the treatment of psoriasis.


Assuntos
MicroRNAs , Psoríase , Humanos , Animais , Camundongos , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Psoríase/genética , Psoríase/tratamento farmacológico , Transdução de Sinais , Proliferação de Células/genética , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogênicas/metabolismo , Ciclina E/genética
7.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508144

RESUMO

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Assuntos
Histona Desmetilases , Neuroblastoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Proteínas Oncogênicas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
8.
Sci Rep ; 14(1): 7091, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528032

RESUMO

Graphene quantum dots (GQDs) have attracted significant attention in biomedicine, while extensive investigations have revealed a reverse regarding the potential biotoxicity of GQDs. In order to supplementing the understanding of the toxicity profile of GQDs, this study employs a molecular dynamics (MD) simulation approach to systematically investigate the potential toxicity of both GQDs and Graphene Oxide Quantum Dots (GOQDs) on the Anterior Gradient Homolog 2 (AGR2) protein, a key protein capable of protecting the intestine. We construct two typical simulation systems, in which an AGR2 protein is encircled by either GQDs or GOQDs. The MD results demonstrate that both GQDs and GOQDs can directly make contact with and even cover the active site (specifically, the Cys81 amino acid) of the AGR2 protein. This suggests that GQDs and GOQDs have the capability to inhibit or interfere with the normal biological interaction of the AGR2 active site with its target protein. Thus, GQDs and GOQDs exhibit potential detrimental effects on the AGR2 protein. Detailed analyses reveal that GQDs adhere to the Cys81 residue due to van der Waals (vdW) interaction forces, whereas GOQDs attach to the Cys81 residue through a combination of vdW (primary) and Coulomb (secondary) interactions. Furthermore, GQDs aggregation typically adsorb onto the AGR2 active site, while GOQDs adsorb to the active site of AGR2 one by one. Consequently, these findings shed new light on the potential adverse impact of GQDs and GOQDs on the AGR2 protein via directly covering the active site of AGR2, providing valuable molecular insights for the toxicity profile of GQD nanomaterials.


Assuntos
Grafite , Mucoproteínas , Pontos Quânticos , Domínio Catalítico , Grafite/toxicidade , Grafite/química , Simulação de Dinâmica Molecular , Óxidos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
9.
Biochem Biophys Res Commun ; 709: 149818, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555840

RESUMO

Oncoprotein SE translocation (SET) is frequently overexpressed in different types of tumors and correlated with poor prognosis of cancer patients. Targeting SET has been considered a promising strategy for cancer intervention. However, the mechanisms by which SET is regulated under cellular conditions are largely unknown. Here, by performing a tandem affinity purification-mass spectrometry (TAP-MS), we identify that the ubiquitin-specific protease 7 (USP7) forms a stable protein complex with SET in cancer cells. Further analyses reveal that the acidic domain of SET directly binds USP7 while both catalytic domain and ubiquitin-like (UBL) domains of USP7 are required for SET binding. Knockdown of USP7 has no effect on the mRNA level of SET. However, we surprisingly find that USP7 depletion leads to a dramatic elevation of SET protein levels, suggesting that USP7 plays a key role in destabilizing oncoprotein SET, possibly through an indirect mechanism. To our knowledge, our data report the first deubiquitinase (DUB) that physically associates with oncoprotein SET and imply an unexpected regulatory effect of USP7 on SET stability.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Ubiquitina/química , Domínio Catalítico , Ubiquitina Tiolesterase/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo
10.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
11.
Br J Cancer ; 130(4): 513-516, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38316994

RESUMO

The "undruggable" MYC oncoproteins are deregulated in 70% human cancers. The approval of DFMO, an irreversible inhibitor of ornithine oxidase (ODC1) that is a direct transcriptional target of MYC, demonstrates that patients can benefit from targeting MYC activity via an indirect approach. However, the mechanism of action of DFMO needs further studies to understand how it works in post-immunotherapy neuroblastomas. Efforts to develop a more potent and safer drug to block MYC function will continue despite challenges.


Assuntos
Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Eflornitina/metabolismo , Eflornitina/farmacologia , Eflornitina/uso terapêutico
12.
Cells ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38391955

RESUMO

One of the main obstacles to therapeutic success in colorectal cancer (CRC) is the development of acquired resistance to treatment with drugs such as 5-fluorouracil (5-FU). Whilst some resistance mechanisms are well known, it is clear from the stasis in therapy success rate that much is still unknown. Here, a proteomics approach is taken towards identification of candidate proteins using 5-FU-resistant sublines of human CRC cell lines generated in house. Using a multiplexed stable isotope labelling with amino acids in cell culture (SILAC) strategy, 5-FU-resistant and equivalently passaged sensitive cell lines were compared to parent cell lines by growing in Heavy medium with 2D liquid chromatography and Orbitrap Fusion™ Tribrid™ Mass Spectrometry analysis. Among 3003 commonly quantified proteins, six (CD44, APP, NAGLU, CORO7, AGR2, PLSCR1) were found up-regulated, and six (VPS45, RBMS2, RIOK1, RAP1GDS1, POLR3D, CD55) down-regulated. A total of 11 of the 12 proteins have a known association with drug resistance mechanisms or role in CRC oncogenesis. Validation through immunodetection techniques confirmed high expression of CD44 and CD63, two known drug resistance mediators with elevated proteomics expression results. The information revealed by the sensitivity of this method warrants it as an important tool for elaborating the complexity of acquired drug resistance in CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteômica , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Mucoproteínas , Proteínas Oncogênicas
13.
Oncogene ; 43(16): 1203-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413795

RESUMO

Neuroblastoma is the most common extracranial malignant tumor of childhood, accounting for 15% of all pediatric cancer deaths. Despite significant advances in our understanding of neuroblastoma biology, five-year survival rates for high-risk disease remain less than 50%, highlighting the importance of identifying novel therapeutic targets to combat the disease. MYCN amplification is the most frequent and predictive molecular aberration correlating with poor outcome in neuroblastoma. N-Myc is a short-lived protein primarily due to its rapid proteasomal degradation, a potentially exploitable vulnerability in neuroblastoma. AF1q is an oncoprotein with established roles in leukemia and solid tumor progression. It is normally expressed in brain and sympathetic neurons and has been postulated to play a part in neural differentiation. However, no role for AF1q in tumors of neural origin has been reported. In this study, we found AF1q to be a universal marker of neuroblastoma tumors. Silencing AF1q in neuroblastoma cells caused proteasomal degradation of N-Myc through Ras/ERK and AKT/GSK3ß pathways, activated p53 and blocked cell cycle progression, culminating in cell death via the intrinsic apoptotic pathway. Moreover, silencing AF1q attenuated neuroblastoma tumorigenicity in vivo signifying AF1q's importance in neuroblastoma oncogenesis. Our findings reveal AF1q to be a novel regulator of N-Myc and potential therapeutic target in neuroblastoma.


Assuntos
Neuroblastoma , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Proteínas Oncogênicas/metabolismo , Transformação Celular Neoplásica , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
14.
Histopathology ; 84(6): 1061-1067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409827

RESUMO

AIMS: The histological subtype of intrahepatic cholangiocarcinoma (iCCA) is associated with different mutational characteristics that impact clinical management. So far, data are lacking on the presence of small duct iCCA (SD-iCCA) and large duct iCCA (LD-iCCA) in a single patient. The aim of the current study was to determine the presence and degree of intratumoural heterogeneity of SD- and LD-iCCA features in different tumour regions. METHODS AND RESULTS: All patients treated with surgically resected iCCA at Frankfurt University Hospital between December 2005 and March 2023 were retrospectively analysed. Histomorphological features of SD- and LD-iCCA were evaluated by an expert hepatobiliary pathologist. Tissue samples suspicious for subtype heterogeneity were further investigated. Immunohistochemistry for N-cadherin, S100P, MUC5AC, MUC6, TFF1 and AGR2 and mutational profiling with the Illumina TruSight Oncology 500 (TSO500) assay were performed separately for the SD- and LD-iCCA regions. Of 129 patients with surgically resected iCCA, features of either SD- or LD-iCCA were present in 67.4% (n = 87) and 24.8% of the patients (n = 32), respectively; 7.8% (n = 10) had histomorphological features of both SD- and LD-iCCA, seven patients (5.4%) of which had sufficient formalin-fixed, paraffin-embedded tissue for further analysis. Heterogeneity of both subtypes could be confirmed with immunohistochemistry. In five of seven (71.4%) patients, molecular profiling revealed intratumoural differences in genetic alterations between the SD- and LD-iCCA region. In one patient, a BRAF mutation (p.V600E) was found in the SD-iCCA but not in the LD-iCCA region of the tumour. CONCLUSIONS: A marked portion of patients with iCCA exhibits both SD- and LD-iCCA in different tumour regions. In case of the presence of histopathological heterogeneity, mutational profiling should be considered to avoid missing therapeutically relevant genetic alterations.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Estudos Retrospectivos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Mutação , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Mucoproteínas/genética , Proteínas Oncogênicas/genética
15.
Nat Rev Cancer ; 24(4): 240-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424304

RESUMO

Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Fatores de Transcrição , Proteínas Oncogênicas
16.
Cell Death Dis ; 15(2): 165, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388484

RESUMO

In hepatocellular carcinoma (HCC), immunotherapy is vital for advanced-stage patients. However, diverse individual responses and tumor heterogeneity have resulted in heterogenous treatment outcomes. Our mechanistic investigations identified LAPTM4B as a crucial gene regulated by ETV1 (a transcription factor), especially in liver cancer stem cells (LCSCs). The influence of LAPTM4B on LCSCs is mediated via the Wnt1/c-Myc/ß-catenin pathway. CXCL8 secretion by LAPTM4B drove myeloid-derived suppressor cell (MDSC) migration, inducing unfavorable patient prognosis. LAPTM4B affected PD-L1 receptor expression in tumor microenvironment and enhanced tumor suppression induced by PD-L1 monoclonal antibodies in HCC patients. LAPTM4B up-regulation is correlated with adverse outcomes in HCC patients, sensitizing them to PD-L1 monoclonal antibody therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Células Supressoras Mieloides/metabolismo , Antígeno B7-H1/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fatores de Transcrição , Imunoterapia/métodos , Proliferação de Células , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo
17.
Br J Cancer ; 130(7): 1096-1108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341509

RESUMO

BACKGROUND: Pancreatic neuroendocrine tumors (PNETs) with low microvessel density and fibrosis often exhibit clinical aggressiveness. Given the contribution of cancer-associated fibroblasts (CAFs) to the hypovascular fibrotic stroma in pancreatic ductal adenocarcinoma, investigating whether CAFs play a similar role in PNETs becomes imperative. In this study, we investigated the involvement of CAFs in PNETs and their effects on clinical outcomes. METHODS: We examined 79 clinical PNET specimens to evaluate the number and spatial distribution of α-smooth muscle actin (SMA)-positive cells, which are indicative of CAFs. Then, the findings were correlated with clinical outcomes. In vitro and in vivo experiments were conducted to assess the effects of CAFs (isolated from clinical specimens) on PNET metastasis and growth. Additionally, the role of the stromal-cell-derived factor 1 (SDF1)-AGR2 axis in mediating communication between CAFs and PNET cells was investigated. RESULTS: αSMA-positive and platelet-derived growth factor-α-positive CAFs were detected in the hypovascular stroma of PNET specimens. A higher abundance of α-SMA-positive CAFs within the PNET stroma was significantly associated with a higher level of clinical aggressiveness. Notably, conditioned medium from PNET cells induced an inflammatory phenotype in isolated CAFs. These CAFs promoted PNET growth and metastasis. Mechanistically, PNET cells secreted interleukin-1, which induced the secretion of SDF1 from CAFs. This cascade subsequently elevated AGR2 expression in PNETs, thereby promoting tumor growth and metastasis. The downregulation of AGR2 in PNET cells effectively suppressed the CAF-mediated promotion of PNET growth and metastasis. CONCLUSION: CAFs drive the growth and metastasis of aggressive PNETs. The CXCR4-SDF1 axis may be a target for antistromal therapy in the treatment of PNET. This study clarifies mechanisms underlying PNET aggressiveness and may guide future therapeutic interventions targeting the tumor microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Tumores Neuroendócrinos/patologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Tumores Neuroectodérmicos Primitivos/metabolismo , Tumores Neuroectodérmicos Primitivos/patologia , Microambiente Tumoral , Fibroblastos/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/uso terapêutico , Proteínas Oncogênicas/metabolismo
18.
Dis Aquat Organ ; 157: 73-80, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421009

RESUMO

A novel papillomavirus (PV) associated with hyperplastic nodules scattered over the muco-cutaneous border of the oral cavity of a dead, wild, subadult northern sea otter Enhydra lutris kenyoni (NSO) in 2004 in Homer, Alaska, USA, was genetically characterized. Primers for the amplification of 2 large overlapping DNA fragments that contained the complete genome of the NSO PV were designed. Sanger methodology generated sequences from which new specific primers were designed for the primer-walking approach. The NSO PV genome consists of 8085 nucleotides and contains an early region composed of E6, E7, E1, and E2 open reading frames (ORFs), an E4 ORF (contained within E2) lacking an in-frame proximal ATG start codon, an unusually long (907 nucleotide) stretch lacking any ORFs, a late region that contains the capsid genes L2 and L1, and a non-coding regulatory region (ncRR). This NSO PV has been tentatively named Enhydra lutris kenyoni PV2 (ElkPV2). Pairwise and multiple sequence alignments of the complete L1 ORF nucleotides and concatenated E1-E2-L1 amino acid sequences showed that the NSO PV is a novel PV, phylogenetically most closely related to southern sea otter PV1. The carboxy end of the E6 oncoprotein does not contain the PDZ-binding motif with a strong correlation with oncogenicity, suggesting a low-risk PV, which is in agreement with histopathological findings. However, the ElkPV2 E7 oncoprotein does contain the retinoblastoma (pRb) binding domain LXCXE (LQCYE in ElkPV2), associated with oncogenicity in some high-risk PVs. Further studies on the prevalence and clinical significance of ElkPV2 infections in NSO are needed.


Assuntos
Lambdapapillomavirus , Lontras , Animais , Alaska/epidemiologia , Nucleotídeos , Proteínas Oncogênicas
19.
Nat Commun ; 15(1): 1362, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355937

RESUMO

Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors. SET interacts and collaborates with ZBTB11 to promote lung cancer cell migration and invasion, primarily through SET-ZBTB11 complex-mediated transcriptional activation of matrix metalloproteinase-9 (MMP9). Additionally, by transcriptional repression of proline-rich Gla protein 2 (PRRG2), ZBTB11 links Yes-associated protein 1 (YAP1) activation to drive lung tumor metastasis independently of SET-ZBTB11 complex. Loss of ZBTB11 suppresses distal metastasis in a lung tumor mouse model. Overexpression of ZBTB11 is recapitulated in human metastatic lung tumors and correlates with diminished survival. Our study demonstrates ZBTB11 as a key metastatic regulator and reveals diverse mechanisms by which ZBTB11 modulates lung tumor metastasis.


Assuntos
Neoplasias Pulmonares , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação da Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Biomed Pharmacother ; 171: 116165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237348

RESUMO

Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/metabolismo , Genes Supressores de Tumor , Oncogenes , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...